Single-view-based 3D facial reconstruction method robust against pose variations
نویسندگان
چکیده
The 3D Morphable Model (3DMM) and the Structure from Motion (SfM) methods are widely used for 3D facial reconstruction from 2D single-view or multiple-view images. However, model-based methods suffer from disadvantages such as high computational costs and vulnerability to local minima and head pose variations. The SfM-based methods require multiple facial images in various poses. To overcome these disadvantages, we propose a single-view-based 3D facial reconstruction method that is personspecific and robust to pose variations. Our proposed method combines the simplified 3DMM and the SfM methods. First, 2D initial frontal Facial Feature Points (FFPs) are estimated from a preliminary 3D facial image that is reconstructed by the simplified 3DMM. Second, a bilateral symmetric facial image and its corresponding FFPs are obtained from the original side-view image and corresponding FFPs by using the mirroring technique. Finally, a more accurate the 3D facial shape is reconstructed by the SfM using the frontal, original, and bilateral symmetric FFPs. We evaluated the proposed method using facial images in 35 different poses. The reconstructed facial images and the ground-truth 3D facial shapes obtained from the scanner were compared. The proposed method proved more robust to pose variations than 3DMM. The average 3D Root Mean Square Error (RMSE) between the reconstructed and ground-truth 3D faces was less than 2.6 mmwhen 2D FFPs were manually annotated, and less than 3.5 mmwhen automatically annotated. & 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
3D Model Based Pose Invariant Face Recognition from a Single Frontal View
This paper proposes a 3D model based pose invariant face recognition method that can recognize a face of a large rotation angle from its single nearly frontal view. The proposed method achieves the goal by using an analytic-to-holistic approach and a novel algorithm for estimation of ear points. Firstly, the proposed method achieves facial feature detection, in which an edge map based algorithm...
متن کامل3D Facial Expression Reconstruction using Cascaded Regression
This paper proposes a novel model fitting algorithm for 3D facial expression reconstruction from a single image. Face expression reconstruction from a single image is a challenging task in computer vision. Most state-of-the-art methods fit the input image to a 3D Morphable Model (3DMM). These methods need to solve a stochastic problem and cannot deal with expression and pose variations. To solv...
متن کاملSingle view-based 3D face reconstruction robust to self-occlusion
State-of-the-art 3D morphable model (3DMM) is used widely for 3D face reconstruction based on a single image. However, this method has a high computational cost, and hence, a simplified 3D morphable model (S3DMM) was proposed as an alternative. Unlike the original 3DMM, S3DMM uses only a sparse 3D facial shape, and therefore, it incurs a lower computational cost. However, this method is vulnera...
متن کاملRobust 3D Face Shape Reconstruction from Single Images via Two-Fold Coupled Structure Learning and Off-the-Shelf Landmark Detectors
In this paper, we propose a robust method for monocular face shape reconstruction (MFSR) using a sparse set of facial landmarks that are detected by most of the off-theshelf landmark detectors. Different from the classical shape-from-shading framework, we formulate the MFSR problem as a Two-Fold Coupled Structure Learning (2FCSL) process, which consists of learning a regression between two subs...
متن کامل3D Bilinear Face Model Fitting from Multiple Cameras
3D facial analysis attracts much interest recently due to the fact that it provides solutions for mitigating confounding factors in 2D image analysis, such as pose, illumination. On the other hand, it also provides enriched representation with more discriminative depth information for applications such as expression or identity analysis. In this paper, we investigate 3D face reconstruction base...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 48 شماره
صفحات -
تاریخ انتشار 2015